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Abstract—With the emergence of onboard vision processing
for areas such as the internet of things (IoT), edge computing
and autonomous robots, there is increasing demand for compu-
tationally efficient convolutional neural network (CNN) models
to perform real-time object detection on resource constraints
hardware devices. Tiny-YOLO is generally considered as one
of the faster object detectors for low-end devices and is the
basis for our work. Our experiments on this network have
shown that Tiny-YOLO can achieve 0.14 frames per second
(FPS) on the Raspberry Pi 3 B, which is too slow for soccer
playing autonomous humanoid robots detecting goal and ball
objects. In this paper we propose an adaptation to the YOLO
CNN model named xYOLO, that can achieve object detection
at a speed of 9.66 FPS on the Raspberry Pi 3 B. This is
achieved by trading an acceptable amount of accuracy, making
the network approximately 70 times faster than Tiny-YOLO.
Greater inference speed-ups were also achieved on a desktop
CPU and GPU. Additionally we contribute an annotated Darknet
dataset for goal and ball detection.

Index Terms—CNN, RoboCup, Object Detection

I. INTRODUCTION

The popularization of deep learning has done much to fur-
ther advancements in computer vision, where modest amounts
of computational power allow for the processing of images
to gain insight on their contents [11]. As real-world image
data typically has high spatial correlation, convolutional neural
networks (CNNs) have been particularly successful in the
application of object detection in images [26]. Compared to
fully connected networks, CNNs offered large computation
and size reduction [6].

In this paper our chosen problem domain is RoboCup,
an annually held international humanoid robotics competition
with the goal of producing a team of robots that beat the
best human football players in the world by 2050 [9]. The
reason for this ambitious goal is to help motivate several key
areas in artificial intelligence in a format that the general
public understand and appreciate without having insight to
the complexity of the robots themselves. There are many
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limitations in the competition in aid of reaching the 2050 goal,
such as: robots must be fully autonomous, must be human like
(e.g. passive sensors only) and must adhere to an adaptation
of the official FIFA rules 1.

Our team, Electric Sheep, competed in the 2019 world
cup with our unique low-cost open-source humanoid robotics
platform 2. The purpose of designing and building a low-cost
platform was to lower the boundary to entry, as larger robots
have seen larger costs in recent years which could discourage
new teams from entering the competition. Our platform, Black
Sheep, performs all processing on a Raspberry Pi 3 B including
our vision processing pipeline. As our agent behaviour is very
simple it only requires the detection of goals and balls.

In this paper, we propose a YOLO based CNN model which
can detect balls and goal posts at ≈10 FPS, which given the
current relatively slow speed of robot play, is an acceptable
frame rate. Our proposed model is called xYOLO and exploits
the domain specific attributes such as the requirement of two
classes (ball and goal post), simple shape features of the
objects and clearly differentiable objects from the background.
This allows our model to achieve real-time object detection
speed with reasonable accuracy.

In Section II we give a brief overview of efforts prior to
the implementation of the neural networks in this domain,
why these approaches are not appropriate for the updated
environment and the current approaches for object detection.
In Section III we describe our network architecture for xYOLO
and how it differs from similar existing work. For Section IV
we describe experiments and analyse results for comparable
networks. Finally, in Section V we evaluate our work and
discuss future work.

II. RELATED WORK

Traditionally, in the context of the RoboCup humanoid
robotics competition, colour segmentation based techniques
have been used to detect features of the soccer field, such

1Humanoid rules: https://www.robocuphumanoid.org/materials/rules/
2Humanoid platform: https://github.com/electric-sheep-uc/black-sheep
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as goals and balls [16] [17]. These techniques are fast and
can achieve good accuracy in simplistic environments, for
example the use of an orange ball, controlled indoor lighting
and yellow coloured goals. However, in light of RoboCup’s
2050 goal, teams have seen the introduction of natural light-
ing conditions (exposure to sunlight), white goal posts with
white backgrounds and FIFA balls with a variety of colours.
Colour segmentation based techniques fail to perform in these
challenging scenarios and has mostly pushed the competition
towards implementing a variety of neural network approaches
[12] [25].

CNN based models have shown great progress in terms
of object detection accuracy in complex scenarios [21] [15],
[10] [24] [20] [1]. However, these high performing computer
vision systems based on CNNs, although much leaner than
fully connected networks, are still both considerably memory
and computationally exhausting, and achieve real-time perfor-
mance only on high-end GPU devices. For this reason, most of
these models are not suitable for low-end devices such as smart
phones or mobile robots. This limits their use in real-time
applications such as autonomous humanoid robots playing
soccer, as there are power and weight considerations. Thus, the
development of lightweight, computationally efficient models
that allow CNNs to work using less memory and on minimal
computational resources is an active research area [3] [1] [5]
[23].

Recently, a large number of research papers have been
published on the topic of lightweight deep learning models
for object detection that are suitable for low-end hardware
devices [3] [22] [2] [13] [18] [21] [5] [23]. Most of these
models are based on SSD [15], SqueezeNet [7], AlexNet [10],
and GoogLeNet [24]. Generally, in these models the object
detection pipeline contains several components such as pre-
processing, large numbers of convolution layers, and post-
processing. Classifiers are evaluated at various locations in
images and at multiple scales using a sliding window approach
or region proposal methods. These complex object detection
pipelines are computationally intensive and consequently slow.
XNOR-Networks [18] approximate convolutions using binary
operation, which is computationally efficient compared to the
floats used in traditional convolutions. An obvious downside
of XNOR networks is the reduction in accuracy for similarly
sized networks.

On the other-hand, in you only look once (YOLO), object
detection is framed as a single regression problem. YOLO
works at the bounding box level rather than pixel level, i.e.
YOLO simultaneously predicts bounding boxes and associated
class probabilities from the entire image in one “look”. One of
the key advantages of YOLO is its ability to encode contextual
information, and as a result it makes less mistakes in confusing
background patches in an image for objects [20] [21].

The “lighter” version of YOLO v3 [21], called Tiny-YOLO,
was designed with speed in mind and is generally reported as
one of the better performing models in-terms of speed and
accuracy trade-off [21]. Tiny-YOLO has nine convolutional
layers and two fully connected layers. Our experiments suggest

that Tiny-YOLO is able to achieve 0.14 FPS on Raspberry Pi
3, which is far from real-time object detection.

From the results reported in [21], it can be concluded
that these object detectors are not able to give real-time
performance on low-end hardware with minimal computing
resources (e.g. humanoid robots with a Raspberry Pi as the
computing resource). In our robots, we are using one compute
resource for several different processes, such as the walk
engine, self-localization, etc. The vision system is left with
approximately a single core to perform all object detection.

III. NETWORK

Our proposed network, xYOLO, is derived from YOLO v3
tiny [21], specifically we use AlexeyAB’s Darknet fork that
allows for XNOR layers and building on the Raspberry Pi 3. As
seen in Figure 1, xYOLO utilizes both normal convolutional
and XNOR layers in both training and recall. The network has
several key changes:

• Reduction in input layer size: Scaling the input image to
256 x 256 pixels was the smallest input we could create
without sacrificing the network’s ability to see details
at far-distance in the 640 x 480 original image. Due to
limitations of the framework implementation, preserving
aspect ratio was not easily possible. Switching from RGB
to grey scale input (three channels down to one) had
very little impact on speed, but largely affected detection
quality, hence we use full colour information. Through
experimentation we realized that ball detection relies on
its context, in this case the green field background.

• Heavily reduced number of filters: Generally, the objects
we are attempting to detect are quite simple in shape and
features, meaning this domain specific reduction can be
made. We were able to heavily reduce the size of the
network with this change and increase detection speed
dramatically.

• Layers m, n, o and p use XNOR: Through experimenta-
tion we found that this part of the network was able to
switch to XNOR without affecting training or prediction.
Whilst the network size remains the same, not using
floating point arithmetic gave a marginal speed increase
during detection. When using XNOR throughout the
network (specifically the convolutional layers between a
and k) we found the network was unable to detect objects
to any accuracy (see Figure 2). We believe the early
feature formation in the network to be highly important
in training and object detection for small networks.

Each year of the RoboCup competition introduces new
challenges, where models have to be retrained using images
collected and labelled during the setup time of the competition.
Consequently, our approach towards designing this network
was to reduce the training time to below 45 minutes, allowing
for relatively rapid testing of different network configurations
and new soccer field conditions. Figure 2 is an example of a
network where the parameters are reduced too far, such that

3Darknet fork: https://github.com/AlexeyAB/darknet
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Fig. 1: The network structure is as follows: convolutional: a, c, e, g, i, k, s, v, w, max pool: b, d, f, h, j, l,
convolutional XNOR: m, n, o, p, yolo: q, x, upsample: t, route: r, u.

Fig. 2: Example of a network that is too small to detect objects.

it is incapable of detecting objects. In Figure 3 this would
manifest itself as the loss mean square error not reducing
below 6 before 1,000 iterations or models that are not able
to reduce their loss to an acceptable value, i.e. below 1.5.
Generally we are able to conclude whether a network has a
reasonable chance of success within the first 15 minutes of
training.

IV. EXPERIMENTS AND RESULTS

Experiments are conducted using Darknet [19], an open
source neural network framework. Darknet is fast (written in
C language with many optimizations), easy to compile on the
Raspberry Pi and supports both CPU and GPU training and
detection. Our proposed model (xYOLO) is compared against
Tiny-YOLO (v3) [21] and Tiny-YOLO-XNOR (v3) [18]. Tiny-
YOLO is reported as a CNN model with good trade-off be-
tween computational efficiency and object detection accuracy
[13] [8]. Tiny-YOLO-XNOR is a lightweight implementation
of Tiny-YOLO with XNOR [18] in the Darknet framework.
Each of the models is adapted for the use of two classes by
adjusting the number of filters before the YOLO layers to the
following (we have two classes, ball and goal):

filters = (classes+ 5)× 3 (1)

ID Filters Size Input Output
a 2 3 x 3 / 1 256 x 256 x 3 256 x 256 x 2
b 2 x 2 / 2 256 x 256 x 2 128 x 128 x 2
c 4 3 x 3 / 1 128 x 128 x 2 128 x 128 x 4
d 2 x 2 / 2 128 x 128 x 4 64 x 64 x 4
e 8 3 x 3 / 1 64 x 64 x 4 64 x 64 x 8
f 2 x 2 / 2 64 x 64 x 8 32 x 32 x 8
g 16 3 x 3 / 1 32 x 32 x 8 32 x 32 x 16
h 2 x 2 / 2 32 x 32 x 16 16 x 16 x 16
i 32 3 x 3 / 1 16 x 16 x 16 16 x 16 x 32
j 2 x 2 / 2 16 x 16 x 32 8 x 8 x 32
k 64 3 x 3 / 1 8 x 8 x 32 8 x 8 x 64
l 2 x 2 / 1 8 x 8 x 64 8 x 8 x 64
m 128 3 x 3 / 1 8 x 8 x 64 8 x 8 x 128
n 32 1 x 1 / 1 8 x 8 x 128 8 x 8 x 32
o 64 3 x 3 / 1 8 x 8 x 32 8 x 8 x 64
p 21 1 x 1 / 1 8 x 8 x 64 8 x 8 x 21
s 16 1 x 1 / 1 8 x 8 x 32 8 x 8 x 16
t 2x 8 x 8 x 16 16 x 16 x 16
v 32 3 x 3 / 1 16 x 16 x 48 16 x 16 x 32
w 21 1 x 1 / 1 16 x 16 x 32 16 x 16 x 21

TABLE I: The following is the network structure of xYOLO.

The models are evaluated on our dataset. The details of
the dataset are described in Section IV-A. All models were
trained using 90% of images in the dataset and 10% of these
images were used during testing. Object detection accuracy
is measured by mean Average Precision (mAP) and F-Score
[14]. All of these models are evaluated using the default
parameters settings. Computational efficiency of the models is
measured by inference time and train time (minutes). Models
are evaluated on the Raspberry Pi 3 B, a standard desktop CPU
(Intel i7-6700HQ) and a standard GPU (Nvidea GTX 960M)
environment to measure inference time. Since memory is also
an issue on low-end hardware, we also compared models
using network size MB (Mega Bytes) and computational size
BFLOPs (Billion FLOPs) performance metrics [21].

A. Dataset

One of the contributions of this study is our annotated
dataset from the RoboCup 2019 competition using cameras
mounted on the robots in both the controlled and natural
lighting scenarios. We also used some images from previous



competitions via the Image Tagger community-driven project
[4]. Each of these raw images are manually annotated. There
are two classes in the dataset: ball and goal post. Traditionally
people used complete goals as a single object. The inside of the
goal is hollow and usually only part of the goal on the field is
in the camera frame, making the detection of a full goal often
difficult. In RoboCup, generally the ball stays on the ground,
thus the robot rarely needs to look upwards and detecting only
the bottom of the goal posts is ideal. In consideration of this,
we used bottom of the goal posts to detect goal. In this dataset
both left and right goal posts are considered as two instances
of the same class (goal post).

This dataset contains range of challenging scenarios, such
as natural lighting (sun light spots on the field), shadows, and
blurred images since robots are moving. Some of the glimpses
of the complexities of the dataset can be seen in Figure 5. We
have open sourced this dataset and is available for public use
4.

B. Comparative Computational Speed

The key focus of this paper is to achieve real-time object
detection and localization performance on low-end computing
hardware such as Raspberry Pi 3 B. To time models training
duration, we used a cloud instance with an Nvidea K80 GPU
and 55GB RAM. All models were trained for 6000 iterations
and tested for inference speed in both a standard desktop
environment and a Raspberry Pi. As shown in Table II, train
times are reported on the cloud instance GPU and inference
speed is reported on multiple hardware targets.

As shown in the Table II, xYOLO achieved superior per-
formance in terms of computational efficiency compared to
the other tested models. For train time xYOLO is ≈5 times
faster than the other two models. For inference speed, xYOLO
achieved 706.36 FPS on the GPU, which is ≈7 times faster
than Tiny-YOLO-XNOR and ≈9 times faster than Tiny-
YOLO. On desktop CPU, xYOLO performed 87 and 35 times
better than Tiny-YOLO and Tiny-YOLO-XNOR respectively.
On the Raspberry Pi, xYOLO performed 69 times faster than
Tiny-YOLO and 25 times faster than Tiny-YOLO-XNOR. The
improved speed gain is due to small input and filters size.
Tiny-YOLO-XNOR averaged 2.52 FPS on the Raspberry Pi
and Tiny-YOLO at 1 FPS. Both of these models are too slow
to be used effectively in the RoboCup competition, as games
develop quickly. On the other hand, xYOLO is capable of ≈10
fps on the Raspberry Pi, which is reasonable object detection
speed, especially for the purpose of humanoid league soccer
matches.

In terms of network size, xYOLO is 45 times smaller than
Tiny-YOLO and ≈15 times smaller than Tiny-YOLO-XNOR
in network size. Similarly, xYOLO requires 0.039 BFLOPs,
which is significantly lower than other two models. In short,
xYOLO outperformed other models on all computational
efficiency metrics.

4Dataset released under a Creative Commons license (free login required
for access): https://imagetagger.bit-bots.de/images/imageset/689/

Network Tiny-YOLO Tiny-YOLO-XNOR xYOLO
Train Time (minutes) 183 174 39
Inference (FPS) 0.89 2.52 70.69
i7-6700HQ stdev 0.059 0.026 0.0018
Inference (FPS) 79.97 97.28 706.36
GTX 960M stdev 0.00064 0.00055 0.00023
Inference (FPS) 0.14 0.39 9.66
rPi 3 B stdev 0.064 0.012 0.0012
Size (MB) 34.7 12.46 0.82
BFLOPs 5.449 5.449 0.039

TABLE II: Computational efficiency and network size results.
Note that the reported BFLOPs for Tiny-YOLO-XNOR and
xYOLO incorrectly calculate the XNOR layers as FLOPs.
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Fig. 3: Train loss results for the models. It is observed that
the models took ≈4000 iterations to reach their lowest loss.

C. Comparative Accuracy

The object detection and localization accuracy of the models
is measured by train loss (mean square error), validation mAP
(mean Average Precision on validation dataset), inference
mAP on test dataset and F-score. We used Darknet transfer
learning where pre-trained weights (darknet53.conv.74)
for the Imagenet dataset are used as initial weights for train-
ing. This transfer learning helps models take less than 1000
iterations to reduce their loss to less than 6. Figure 3 shows
train loss for the models. Results from the Figure 3 suggests
that the models took ≈4000 iterations to stabilized and after
that loss was not greatly reduced. Tiny-YOLO was able reduce
its loss to ≈0.5, with xYOLO to ≈1 and Tiny-YOLO-XNOR
to ≈1.5. Accuracy results (mAP) on the validation set are

Algorithm mAP (Train) mAP (Test) F-score
Tiny-YOLO 94.65 93.69 92
Tiny-YOLO-XNOR 68.42 64.75 62
xYOLO 68.22 66.75 68

TABLE III: Object detection accuracy results on our humanoid
soccer dataset (see Section IV-A).
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Fig. 4: Accuracy (mAP) results for the models during training
on the validation set. It is observed that Tiny-YOLO performed
significantly better than the other two models.

presented in Figure 4 and Table III. It is observed that models
have achieved similar accuracy on both train and unseen test
sets. Tiny-YOLO achieved significantly better object detection
accuracy compared to other models. xYOLO was able to
achieve ≈68% accuracy on validation dataset, and ≈67% on
the test set, which is good when the speed and size of xYOLO
is considered.

D. Qualitative Evaluation

Figure 5 demonstrates object detection results by each of the
models on a challenging scenarios. All models were able to
detect both ball and goal post in easy scenarios, where objects
are quite clearly seen. It is observed that the Tiny-YOLO
struggled to detect one goal post in the blurred image scenarios
(Figure 5b). In a scenario where there are shadows on the field
(Figure 5c), Tiny-YOLO-XNOR was not able to detect both
goal post or ball, whereas xYOLO was able to detect the ball
but not the goal post and Tiny-YOLO was able to detect both
objects. In the natural lighting scenario with strong sunlight
spots on the field, all models performed well with Tiny-YOLO
able to detect partially observable ball. In summary, both
Tiny-YOLO and xYOLO have shown advantages in different
scenarios.

V. DISCUSSION

Although xYOLO has less accuracy, it is the only model
tested that was able to achieve ≈10 FPS with an acceptable
≈70% accuracy, making it suitable for low-end hardware real-
time detection on the Raspberry Pi. For humanoid soccer,
robots have to make quick decisions (e.g. to detect a rolling
ball). For this reason, fast models with slightly lower accuracy
work better than highly accurate but slower models. xYOLO
provides a good speed and accuracy compromise for humanoid
soccer, which was achieved by reducing the training time,
thereby reducing experiment time and allowed for us to fine
tune the network to detect objects within the domain.

In future work we look towards performing pre-processing
techniques on the input image to further reduce the size of the
network. Additionally we want to leverage the high correlation
of inter-frame data through the use of optical flow.
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(a) Easy detection scenario, ball and goal posts are clear.

(b) As robot’s camera is often moving and as a result models have to perform in blurred image scenario.

(c) Object detection results in natural lighting scenario with shadows on the field.

(d) Object detection results in natural lighting scenarios with strong sunlight spots on the field.

Fig. 5: Example object detection results produced by the models. Left side: Tiny-YOLO [21], center: xYOLO, right side: Tiny-
YOLO-XNOR. Balls and goals are labelled when each network identifies an object that reaches the detection threshold.
It can be observed that xYOLO has better object detection results than Tiny-YOLO-XNOR [18] and comparable result to
Tiny-YOLO.

[21] Joseph Redmond and Ali Farhadi. YOLOv3: An Incremental Improve-
ment. arXiv, 2018.

[22] Daniel Speck, Pablo Barros, Cornelius Weber, and Stefan Wermter. Ball
Localization for Robocup Soccer using Convolutional Neural Networks.
RoboCup International Symposium, 2016.

[23] Daniel Speck, Marc Bestmann, and Pablo Barros. Towards Real-Time
Ball Localization using CNNs. RoboCup International Symposium,

2018.
[24] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going Deeper with Convolutions. In Computer Vision and
Pattern Recognition (CVPR), 2015.

[25] Sander van Dijk and Marcus Scheunemann. Deep Learning for Se-
mantic Segmentation on Minimal Hardware. RoboCup International
Symposium, 2018.

[26] Matthew Zeller and Rob Fergus. Visualizing and Understanding Con-
volutional Networks. European Conference on Computer Vision, 2014.


	Introduction
	Related Work
	Network
	Experiments and Results
	Dataset
	Comparative Computational Speed
	Comparative Accuracy
	Qualitative Evaluation

	Discussion
	References
	References

